• Icon
    Reageren t/m12 juli 2021

Vacature

Werkomgeving

You start with a concise literature review and exploring the available data within Acutelines. Next, in collaboration with a technical physician, you will develop algorithms to pre-process complex data (i.e. photographs, electrophysiological waveforms) to identify features predictive of deterioration. Therefore, these features will be associated with deterioration using classical regression models, followed by integration into ML-models with demographic and medical data. In collaboration with the technical developer of Acutelines, you will work to further improve the database structure to collect high quality data from different sources, in accordance with legislation, regulations and to fit the needs of developing models to predict deterioration in sepsis. During monthly scientific group meetings, you will share your ideas and results with the research group. We offer the possibility to combine the project with a graduation research.

Functieomschrijving

Sepsis is a dysregulated host response to an infection, which is associated with organ failure and can lead to death of the patient. The global burden of sepsis is high, as it affects 30 million people per year, leading to the death of 20% of these people. Recognition of early sepsis is critical to allow timely initiation of adequate treatment: antibiotics and supportive care. Clinical sepsis criteria to facilitate its diagnosis using a combination of vital parameters have a very limited sensitivity in the early phase and most physicians diagnose sepsis based on the clinical impression, also known as “gut feeling”. Importantly, the clinical impression of the physician is stronger associated with and better in predicting severity-of-illness than clinical sepsis criteria. The estimation by the physician is not only based on vital parameters such as body temperature, heart rate or blood pressure, but also takes the patient’s physical appearance into account and the pattern of parameters. Since rapid recognition of patients in need of medical care is critical among patients admitted to the emergency department (ED), we use big data to develop novel algorithms to improve early recognition of sepsis and identify which patients benefits the most from which therapy (personalized medicine) using deep learning. To facilitate this kind of research, we have set up the Acutelines data-biobank at the ED of the UMCG. The purpose of the Acutelines data-biobank is to improve prevention, recognition and treatment of acute conditions. A trained team of researchers screens all patients entering the ED, followed by data/biomaterial collection depending on broad selection criteria. In addition to demographic and medical data from the electronic patient file, we collect and store biomaterials (blood, urine, stool) for biomarker discovery, take a photograph of the face to predict deterioration using computer vision techniques and record continuous electrophysiological waveforms (i.e. ECG, PPG, EMG) to identify features predictive of deterioration. In the current project, we will identify novel risk markers predictive of deterioration in patients with sepsis at the ED and its interaction with therapy. Herefore, we make use of electrophysiological waveform analysis, photographs and the clinical impression of the health care professional that will be pre-processed prior to intergration into machine-learning models combined with demographic data and vital parameters.

To develop novel algorithms to identify patients who will benefit the most from specific therapy in sepsis (personalized medicine), we aim to:
– Continuously improve the data warehouse structure to allow collection of high quality big data.
– Develop algorithms to pre-process complex data (i.e. photographs, electrophysiological waveforms).
– Integrate data in ML-models to identify risk markers predictive of deterioration in sepsis.
– Identify risk markers predictive of efficacy of given therapy by integrating treatment data in the models.

Wat vragen wij

  • You are a student at the university (of applied sciences) with a focus on data science, such as computer science, data science (for life science), artificial intelligence. Life sciences students with a major on data sciences are also encouraged to apply.
  • You have good social and communication skills that you use correctly depending on the contact.
  • You are creative and have fresh ideas, also within set frameworks.
  • You have good writing skills.
  • You are ambitious and would like to learn new things.

Wat bieden wij

– Internship contract with the UMCG.
– Good supervision in the UMCG.
– Embedding within acute research (Acutelines, see www.acutelines.nl; Early sepsis research group, see www.sepsisonderzoek.nl)
– Scientific working environment.
– Possibility to conduct graduation research within the above project.
– Fixed workplace in the office of Acutelines, equipped with a PC and telephone.
– Nestor: an environment especially for graduates with information, links, tips & tricks that can help you during your graduation period at the UMCG.

Nurse Avtar

Jouw carrière
en Zorg voor het Noorden

Zorg voor het Noorden is een netwerkorganisatie van de negen ziekenhuizen en drie ambulancediensten in Noord-Nederland. Voor jou als zorgprofessional hét platform om de baan of opleiding te vinden die past bij jouw talenten en ambities.

Jouw werkgever
Universitair Medisch Centrum Groningen

Als grootste werkgever van Noord-Nederland vormt het UMCG een zeer diverse gemeenschap van bevlogen collega’s die ieder vanuit hun eigen vakgebied bouwen aan de toekomst van gezondheid. We beschikken over een grote verscheidenheid aan functies en specialismen om dit mogelijk te maken. Voor ieder wat wils kun je wel zeggen. Met al onze verschillen, is er ook duidelijk iets gemeenschappelijks; de mensen van het UMCG zijn bevlogen en voeren met liefde hun vak uit. We zoeken elkaar op en bereiken samen onze doelen. Een belangrijke kernwaarde is 'zie de mens'. Dit geldt niet alleen voor patiënten, maar ook voor elkaar als collega's. En daar zijn we trots op.

Logo-image

4:51
Zie de mens

video Banner

Bouwen aan de toekomst van gezondheid

In het UMCG vind je bevlogen collega’s die ieder vanuit hun eigen vakgebied bouwen aan de toekomst van gezondheid. Hierbij ligt de focus op innovatie, hoogcomplexe zorg en wetenschappelijk onderzoek.

13.204medewerkers

het UMCG is met ruim 13.000 medewerkers de grootste werkgever van Noord-Nederland

43%Man/vrouw

43% van het management is vrouw; de verhouding man/vrouw in managementfuncties is in het UMCG bijna gelijk

8,4beoordeling

Patiënten waarderen onze professionals met een 8,4

Betrokken en betrouwbaar

Het UMCG staat voor samenwerken, betrokken, betrouwbaar en respectvol.

Procedure
Zo verloopt je sollicitatie

Enthousiast geworden? Hieronder zie je hoe de sollicitatieprocedure in Universitair Medisch Centrum Groningen eruit ziet.

icon
1 / 5

Solliciteren

Je solliciteert en ontvangt direct een bevestiging.

icon
2 / 5

Kennismaking

Je solliciteert en ontvangt direct een bevestiging.

icon
3 / 5

Selectie

Je bent de perfecte match!

icon
4 / 5

Tekenen

Je komt langs voor een arbeidsvoorwaardengesprek en tekent voor het team bij UMCG.

icon
5 / 5

Gefeliciteerd, je bent aangenomen!

Samen bepalen we wanneer je aan de slag gaat. Welkom!

Enthousiast?
Solliciteer op deze vacature

Je kan t/m 12 juli 2021 reageren op deze vacature. De sollicitatie vindt plaats op de website van Universitair Medisch Centrum Groningen

Stel je vraag
Waarmee kunnen we je helpen?

Wil je meer weten? Neem contact gerust op!
Nina van Venrooij, Team Recruitment

Image

Student for big data science project using deep learning in the emergency room

Universitair Medisch Centrum Groningen